PROPAGATION OF LONGITUDINAL AND TRANSVERSE
SHOCK WAVES IN AN ELASTIC MEDIUM
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References [1-3] are devoted to the problem of the propagation of strong discontinuity surfaces in an
elastic media. An incompressible medium is studied in [1], while {2, 3] consider an elastic body with a
quasi Hooke's law relating stresses and the components of the Almansi strain. In the present paper we
analyze the possibility of longitudinal shock waves in a medium with an elastic potential which can be writ-
ten as a series in the principal invariants of the Almansi strain tensor. We study the effect of preliminary
strain. The propagation of a pure transverse shock wave is shown to be possible for shear deformations
in front of a strong discontinuity surface. The thermodynamic compatibility condition [2] is satisfied iden~
tically on the shock wave, and the velocity of propagation of a strong tangential discontinuity surface does
not depend on the magnitude of the wave vector.

We assume that a strong discontinuity surface S moves with velocity G in a space filled with an elas-
tic medium. We choose a fixed rec¢tangular reference system xj, xy, X3 with the x; axis along the direction
of the outward normal to S. All equations will be written in this coordinate system.

1. We consider an elastic body with a potential W,Wﬁich can be written in the form
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Here the u; are the components of the displacement vector, the ejjare the components of the Almani

strain tensor, and the Ay, are the elastic moduli.
The stresses and strains are related by [4]
Sy =P/ P (W, W J, A WoT, —2W T8 — CW, + W,y + 20, W, + W, T ) e+ W, + W) e k) (1.3)
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where p and py are, respectively, the densities of the body in the flowing and initial states, and W is the
elastic potential.
Let S be a longitudinal shock wave. Then the geometric and kinematic compatibility conditions [5]
[; ;1= wiﬁjs, [Ou; ,/ 0t} = — Go, 1.4)
take the form

] 1.5
[u; 1= Bu,; [0u, /0] =—GBby, ;= 8,50, B=o0, {1.5)

Here wj is the wave vector, |B]| is the strength of the longitudinal wave, and [p] = p~—p*, where p~
and pT are, respectively, the values of p behind and in front of S.
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Let

1

v, =0u, |0t v, Pu; |0z, vt =0, u ;=ap, {1.6)
Then '
a.7)
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On a shock wave Eq. {1.4) must be satisfied and, in addition conservation of mass and momentum [5]
and a thermodynamic inequality [2] must hold

0] =0, [p0y;]=—[5;5l, 0=G—v, (1.8)
B (07 (W] < [535] (e [05] + ;57) » (1.9)
where W' is the elastic potential per unit volume of the deformed body in front of S.
For a longitudinal shock wave Eqs. (1.8) and (1.9) simplify to
[P0} =0, p™07[vs] = —[om], P*=po(l—=) (L.10)
2(t —2) (1 — = — B) [W] < B([on] 4 205*) (1.11)

Using (1.5) we find from (1.1), (1.2}, (1.6) and (1.7)

le;;1== (B — Bz — B, =an;, [p]=—p,B
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Taking account of (1.12) we obtain from (1.3)

Boppl = B{( =2 = B —2—4aB) Dyon, (g — 20— (1= 3 ma, ™} (1.13)

n=92 n=2

Substituting (1.12) and (1.13) into (1.10) and (1.11) we find

PGt =1 — 2~ B) 3 na, (1 —z—1B)(d —z — B) (P, —2p,) — (1 —0)* ™) .14)
n==p

2 a{l~z~B(d—z+rB)g, ~12Bn(l —v— B, ,—an(l _I)2cn-1} <0 (1.15)

n==g

It follows from (1.14) that the velocity of a longitudinal shock wave propagating in an elastic body
under conditions (1.6) is determined solely by the elastic moduli ap. Only these coefficients enter in-
equality (1.15). The constants g, also effect the values of [o11] and [o3,]. None of the remaining elastic
moduli Ajjk from (1.1) affect the problem under consideration. -

It follows from Eqs. (1.14) and (1.15), which must be satisfied on a shock wave of arbitrary strength,
that for a certain fixed value of B there exists an x = x,, such that for x > x, either inequality (1.15) is not
satisfied or the square of the velocity of the shock wave G? in (1.14) becomes negative. Consider, for ex-
ample, the propagation of weak longitudinal compression shock waves in an elastic body with a five-constant
Murnaghan potential [4] (o =0 for n = 4, |B| « x), if x = 0.1. Since o, > 0, when a3 < 0 we find x, =
0.225; i.e., only for x =< 0.225 can weak shock waves propagate in the body. If o3 > 0, x, = 0.225 + i, where
u depends on the ratio ag/ay.

2. We consider the possibility of the propagation of a strong discontinuity surface S on which [J3] =
[Jy] = [J5] = 0 in an elastic body with the potential {1.1). We note that certain forms of static deformations,
which are possible in any incompressible elastic body when the invariants of the strain tensor are con-
stants, are propounded in [6].
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We assume that u;:3 = 7, “2‘+, 3 =y, and all other u;‘ =0. Using {1.4) and (1.2) we obtain from the condi-
tion that Jy, J,, and J; are constant in passing through S

0y =0, (0 + 22+ (0+ 97 = 2+ ¢ (2.1)

" It follows from this that the end of the wave vector must lie in the (w1, wy) plane on a circle of radius
(z% +y)Y?with its center at the point (—z, —y). Taking account of (L.4) and (2.1) we find for velocity dis-
continuities

[ = — G oy, [l = — Gwy, [r]=10 (2.2}

and for stress discontinuities we bave from (1.3)

(005l = Q0, =19, [055] =0, 4d=—(z2+y)

Q=={2 3 14,001 a" 4 5 a0t a1} o
b =t

Taking account of (2.2) and (2.3) we obtain from the dynamic compatibility conditions (1.8)
pGr = Q (2.4)
Since [W] = 0 and

' og] (il + 233) = Q% (0% + @ + 220, + 2yw) = 0

the thermodynamic compatibility condition (1.9) is satisfied identically on the tangential strong discontin~
uity surface.

Thus the transverse wave is a degenerate shock wave since it, like a sound wave, is not accompanied
by an entropy discontinuity. In addition it follows from (2.4) that the velocity of a transverse shock wave
does not depend on its strength but is determined by the elastic moduli A;py, and the values of the shear
deformation in front of the wave. The strength of this wave can vary from 0 to —8d. For z =y = 0 the
equality w; = w, = 0 must be satisfied, i.e., a transverse shock wave cannot propagate in an elastic body in
the absence of a shear deformation in front of 8.
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